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Far-Infrared Spectra and Two-Dimensional Potential Energy Surfaces Involving the
Ring-Puckering Vibration of 2,5-Dihydrothiophene

Timothy Klots, T SooNo Le€} and Jaan Laane**

BDM Petroleum Technologies, P.O. Box 2543, Batilés Oklahoma 74005, and Department of Chemistry,
P.O. Box 30012, Texas A&M Urersity, College Station, Texas 77842-3012

Receied: October 22, 1998

The far-infrared spectra of 2,5-dihydrothiophene not only show the principal ring-puckering series in the
87—127 cn! region but also possess two sideband series arising from the ring-twisting first and second
excited states. A third series arises from puckering transitions in the excited statevefApein-plane ring

angle bending vibration, which occurs at 509.9 énThe ring-puckering levels in thes excited state are

also confirmed by observed sum, difference, and hot bands. Observed double-quantum transitions confirm
many of these assignments. Each of the four series can be fit well with a one-dimensional single minimum
potential function possessing positive quartic and quadratic terms. Two-dimensional potential energy surfaces
were also calculated to assess the interaction of the ring-puckering with the ring-twisting and in-plane ring
bending modes. The twisting is anticooperative, raising the energy of the puckering process, while the in-
plane ring bending is cooperative, facilitating the puckering motion.

Introduction

The far-infrared spectra of four-membered rings and “pseudo-
four-membered rings” such as cyclopentene have been used for
more than 3 decades to determine the vibrational potential
energy functions governing the ring-puckering motions for these
molecules:— Among the first group of molecules to be studied

1
was 2,5-dihydrothiophene, SGEH=CHCH,. In 1968 Green
and Harve§ reported the far-infrared spectrum and one-
dimensional ring-puckering potential energy function for this
molecule. The function has a single minimum, characteristic
of a planar ring system. Earlier, Ueda and Shimandulchd
analyzed the difference bands arising from aHC stretching ' 1 ' ' '
mode and had obtained similar puckering frequencies and 500 400 300 200 100
potential energy function. However, both potential functions cm”
were based on a reduced mass vathat was calculated using  Eigure 1. Far-infrared spectrum of 1.5 Torr of 2,5-dihydrothiophene
a computer prografithat was later fourftto incorrectly describe ¢ a path length of 3.75 m with a resolution of 0.25ért600 scans).
the puckering motion.

The original far-infrared spectrunof 2,5-dihydrothiophene  These data were then used to calculate the two-dimensional
was recorded at relatively poor resolution. Hence, only the puckering/twisting potential energy surface to determine the
principal puckering series in the 8227 cn! region was interaction between these modes. The results were then com-
observed. For the analogous oxygen compound 2,5-dihydro-pared to those for 2,5-dihydrofuran. For the latter compound,
furan, however, sidebands have been obsetdnd these  the two-dimensional calculation was refined using a corrected
have been used to calculate a two-dimensional potential energykinetic energy (reciprocal reduced mass) expression. In addition,
surface in terms of the ring-puckering and ring-twisting we have observed far-infrared sidebands and mid-infrared sum
coordinates.Since the sidebands originate from the ring-twisting and difference bands associated with the in-plane ring-bending
excited state, there were sufficient data to evaluate the interactionvibration. These allowed us to determine the two-dimensional
between the two out-of-plane ring modes. potential energy surface for the interaction between this mode

In this work we present far-infrared spectra showing the ring- and the ring puckering.
puckering sequence of single quantum jump transitions recorded
under higher resolution and with better signal-to-noise ratio. Experimental Section
Th_e 'spectra contain the expected sidebands_from two. ring- The sample of 2,5-dihydrothiophene was prepared and
twisting excited states and also double quantum jump transmons.purified by the method of Birch and McAlleh. Far-infrared

*To whom correspondence should be addressed. spectra were recorded using a Digilab FTS-ZOE spectrometer

* BDM Petroleum Technologies. with a helium-cooled bolometer detector. Resolutions of 0.1 and

* Texas A&M University. 0.25 cnt! were used and 5601000 scans were collected.
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Figure 2. Far-infrared spectrum of 2,5-dihydrothiophene (expanded) Figure 3. Far-infrared spectrum of 2,5-dihydrothiophene in the double
in the 80-140 cnT? region. quantum jump region.
TABLE 1: Ring-Puckering Transitions (cm~?) of of each_principal_band re_sults from molecules in _ﬂ@(Al) in-
2,5-Dihydrothiophene plane ring-bending excited staté\fg = 1), which has a
principal series _ twisting side bands _ frequency of 509.9 cnt. Table 1 lists all of the_se _observgd
- _ ring-bending frequencies and compares the values for the principal series to
transition thiswork GH or=1 or=2 sidebandse=1 those reported by Green and Harvelhe latter can be seen to
0-1 86.49 87.0 87.98  89.46 84.17 be approximately 0:30.5 cnt?! too high. Our values should
1-2 95.15 955  96.26  97.44 93.13 conservatively be accurate #0.05 cntl. Figure 3 shows the
2-3 101.48 1020 10249  103.47 99.70 170-270 cnt? region for this molecule. The double quantum
3-4 106.58 107.0 107.42 108.32 104.50 : i, _ :
4-5 110.83 1113 11168 11267 [107.5] jump transitions Avp = +_2) corresp(_)ndlng to each o_f the four
5-6 11450 114.8 11528 116.21 observedAvp = +1 series are evident. Table 2 lists these
6—7 117.71 118.1 11846 1194 frequencies and compares the observed values to those inferred
7-8 120.58 120.7 121.19 from adding up single quantum transition frequencies. The
8—9 123.06 123.2 123.61

9-10 12488 1252 12525 excellent agreement confirms the assignments for each of the

1011 [125.29] 127.0 series in Table 1. - .
Because the14 ring-twisting has A symmetry, no combina-
* Reference 5. tions between this mode and the/(B,) ring puckering can be

observed. Transitions from puckering levels to the twisting
excited state have A(infrared forbidden) symmetry when the
excited-state puckering levels have the same symmetry (even
or odd). Odd-to-even or even-to-odd transitions should produce
B; transitions with type B band contours, which have no Q
branches and hence also cannot be readily observed. Combina-
tions withvg(A1), the in-plane ring bending, however, have been
Analysis of Spectra.Figure 1 shows the far-infrared spectrum observed. The sum and difference bamtiss(= +1) have type
of 2,5-dihydrothiophene vapor in the 5620 cnt! region. C contours, while the hot bands are of type A. The weak
Figure 2 presents the spectrum expanded in thel@@ cnr? band at 509.9 cmt can be seen in Figure 1 along with six
region showing more detail, including several observed ring- difference bands in the 383124 cnt? region. Figure 4 shows
puckering series. The strongest bands arise from the principalthe sum bands in the 57®55 cnt? region. At first glance
series Avp = +1) when no other vibrations are excited. In these appear to be difference bands off the straa@-) band
addition, two weaker sideband series on the high-frequency sidesat 669.6 cm?, but the frequencies clearly match as a combina-
of the principal bands can be observed, and these arise fromtion of v,7 and ve. Figure 5 shows the transitions associated
the ring-twistingu14(A2) excited states withr = 1 and 2. The with vg including the sidebands, sum bands, and difference
vapor-phase Raman spectrum showsithgfundamental band ~ bands. Table 3 lists these observed frequencies, and the
to be at 377.5 cmt. A fourth series on the low-frequency side agreement with the values calculated for the sidebands listed

Samples were contained in a Wilkes variable long-path cell with
variable path lengths of-420 m. Raman spectra of the vapor
were recorded using a model 5 Ramalog 14018 SPEX spec-
trometer and a Coherent argon ion laser.

Results and Discussion

TABLE 2: Double-Quantum Transitions (cm~1) for the Ring Puckering of 2,5-Dihydrothiophene

principal series vr=1 vr=2 wr=1

transition observed inferred observed inferred observed inferred observed inferred
0-2 181.46 181.64 184.23 184.24 186.90 177.23 177.30
1-3 196.41 196.63 198.75 198.75 200.91 200.91 192.50 192.83
2—4 207.83 208.06 209.95 209.91 211.43 211.79 203.91 204.20
3-5 217.17 217.41 219.08 219.10 220.84 220.99 212.57 [212.0]
4—6 225.11 225.33 226.95 226.96 228.47 228.88
5-7 232.00 232.21 233.69 233.74 234.90 235.6
6—8 238.10 238.29 239.65 239.65
7-9 243.45 243.64 244.89 244.80
8-10 247.80 247.94 248.9 248.86
9-11 250.17
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TABLE 4: Observed and Calculated Ring-Puckering
Frequencies (cn?) for Different Ring-Twisting States
© calculated
g transition observed 2-DIM 1-DIM
g Principal Seriesir = 0, vr = 0)
‘g 0-1 86.5 87.3 87.7
g 1-2 95.2 94.8 94.9
= 2-3 101.5 100.8 100.8
; 3—-4 106.6 105.9 105.8
4-5 110.8 110.3 110.1
5-6 1145 114.2 113.9
6—7 117.7 117.8 117.4
' ' ' ' 7-8 120.6 121.0 120.6
650 625 600 578 8-9 123.1 124.0 123.5
cm'l 9—-1 124.9 126.8 126.2
. . . . 10-11 125.3 127.8 128.7
Figure 4. Infrared spectrum of 2,5-dihydrothiophene in the 5580 . o .
cm! region showing the sum bands. Ring-Twisting Excited Stateot = 1, vr = 0)
0-1 88.0 88.8 89.2
1000 1-2 96.3 96.1 96.2
o 2-3 102.5 101.9 101.9
34 107.4 106.9 106.7
4-5 111.7 111.3 110.9
8007 5-6 115.3 115.2 114.7
6—7 118.5 118.9 118.1
7—8 121.2 121.9 121.2
600H . 8-9 123.6 124.9 124.1
< 9-10 125.3 127.6 126.7
E Second Twisting Excited Statef= 2, vr = 0)
B 400 . 0-1 89.5 90.3 89.9
g 1-2 97.4 97.3 97.2
w 3 2-3 103.5 103.1 103.1
3—4 108.3 108.0 108.1
2007 2 4-5 112.7 112.3 112.5
, 5-6 116.2 116.2 116.3
wos s 6—7 119.1 119.5 119.9

— —L 0 . . .
0- SP ve aFrom potential functions in Table 6.

Figure 5. Transitions observed between the puckering levels and the

ve excited state. required to not only calculate the ring-puckering potential energy

function in the one-dimensional approximation but also make

TABLE 3: Sum, Difference, and Hot Bands Involving the it possible to calculate two-dimensional potential energy surfaces
v9(Ag) Ring-Bending Vibration reflecting the interaction between the ring-puckering and the
frequency (crm) ring-twisting and ring-bending modes. To carry out these
transition observed calculated calcglatlons: we utilized cqmputgtlonal methqu descr'lbed
previously?* For the one-dimensional calculation, we first
0-1 Sum B%r&sé&w: +1) S04.1 determined the kinetic energy (reciprocal reduced mass) expan-
1-2 600.8 600.7 sion using our previously described computer progtatiThe
2-3 605.2 605.1 calculation was based on a structure from a microwave $tudy
3-4 608.1 608.1 and confirmed by molecular mechanics calculations in our
4-5 608.8 laboratory. The calculated expansion is given by
Difference Bandsfvep = —1)
1-0 4235 423.4 944(%)) = (8.5674x 10°%) — (2.6532x 107 )X —
2-1 412.5 412.4 N 6
3-2 404.2 404.0 (1.1589x 10 )X"+ 0.751%," (1)
4-3 397. 397.0
5-4 391.0 390.7 wheregs4(X;) is the reciprocal reduced mass expressed in terms
6-5 383.7 of the puckering coordinatg given in angstroms. The one-
Fundamental and Hot BandAp = 0) dimensional Hamiltonian that was utilized is
0-0 509.9 [509.9]
%:; gg;zo g%ég H = (h%2) 810%, gaq(X)) 3/0%, + V(X,) 2)
2 From ring-puckering bands in the far-infrared. where the potential energy is given by
in Table 1 can be seen to be excellent. Observation of these V(x) = ax,* + bx? 3

bands was most helpful in confirming that the far-infrared
sidebands, which are shifted to lower frequencies, do indeedBY use of the kinetic energy function of eq 1, the one-
result from transitions occurring within the excited statefug dimensional potential function calculated for the 2,5-dihydro-
= +1). thiophene principal series is

Calculation of Potential Energy SurfacesThe data in Table 1 4 )
1 and confirmed by Tables 2 and 3 provide the information Viem ) = (2.894x 10)x,* + (1.075x 10%)x,*  (4)
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TABLE 5: Observed and Calculated Ring-Puckering

Frequencies (cm?) for Different Ring-Bending States \
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calculated Aty
y L
transition observed 2-DIM 1-DIM \\\\\\&\\\\\:\\W:;,","I’,,’,’/// «
T
Principal Seriesi = 0, g = 0) 7 W )
0-1 86.5 87.5 87.7 % N4 8
1-2 95.2 94.9 94.9 2, |\ w
2-3 101.5 100.8 100.8 2 3
3-4 106.6 105.9 105.8 0 8
4-5 110.8 110.3 110.1 1 &
5-6 114.5 1141 113.9 g
6—7 117.7 117.7 117.4
7-8 120.6 120.9 120.6
8—-9 123.1 123.9 123.5
9-1 124.9 126.7 126.2
10-11 125.3 127.3 128.7
Ring-Bending Excited State{ = 0, vr = 1) Figure 6. Potential energy surface for the ring-puckerirg énd ring-
0-1 84.2 84.9 84.8 twisting (x2) vibrations of 2,5-dihydrothiophene.
1-2 93.1 92.7 92.6
2-3 99.6 98.8 98.8 the two vibrations have different symmetry species, the cross
?1_‘51 18‘7‘-2 igg-g 18;@ kinetic energy ternuss equals zero.
: : : The two-dimensional potential energy surface calculated for
2 From potential functions in Table 6. the puckering/twisting is

The frequency values calculated for this function are compared vV = (2.967x 10°)x,* + (1.029x 10%x,* +
to the observed ones in Table 4, and the fit can be seen to be > 2 2
excellent. Similar one-dimensional calculations were carried out (5.201x 104))(2 + (1.394x 105))(1 X (7)

for the three sideband series. The potential energy parametersl_h ¢ . lculated for thi ¢ . in Table 4
for these are given in Table 6 and the calculated frequencies in € Irequencies caiculated for this surtace are given in 1able
as the 2-DIM calculation. Figure 6 presents this surface for the

Tables 4 and 5. Again, the agreement is excellent. . e
To better assess the interaction of the puckering with the ring- planar molec_ule with the minima for _botq andx a_t zero. As .
twisting or the in-plane ring-bending, a two-dimensional Hamil- can be seen in Table 4i the increase in the puckering frequencies
tonian was used: of approximately 1 cm! for vt = 1 and of 2 cm* for o1 = 2
is well represented by the positive interaction term. The
2 interaction is anticooperative, indicating that the puckering
H = (=A72)[0/09%; 944(X;) 0/0%, + 010X, Gs5 0/X5] + motion requires higher energy in the twisting excited states.
V(x.%;) (5) We also examined the interaction between the puckering and
the in-plane ring angle bending,(= ring bending coordinate).
wherex; andx, are coordinates for the ring puckering and the Since the potential energy for the puckering arises primarily
second vibration, respectively. Thygs term is the reciprocal ~ from the bending of the ring angles and since the same is true
reduced mass for the second vibration. The potential energyfor the in-plane ring angle bendings, a greater interaction

surface is given by between the modes is anticipated even though they are of
different symmetry species. To carry out the two-dimensional
V(X %) = ag%,* + byx,® + boxo? + e 3%, (6) calculation, it was first necessary to calculate the reduced mass

for the ring-bending vibration. A computer program was written

Thus, the second vibration (ring-twisting or in-plane ring ?hgok.t:é?.’cag:e'rts ﬂi‘:‘;ﬂpt:sn CV:I! t;:té)c;etséented_ezljewﬁ%re.
bending) is assumed to be harmonic, and the parammetfects 0132 |38 ::u]l B Sge of thi\staIue trlee Mo-dimgﬁs_ionglt?st;face
the degree of interaction between the two modes. Since we have - By ’

no data on the interaction between the ring-twisting and in- was calculated to be

E:;?ieedrlggt bending, a three-dimensional calculation was not V(Cmfl) = (2.930x 105)x14+ (1.109x 104)x12+
We first examined the interaction between the puckering and (2.925x 104)x22 — (9.660x 104)X12X22 (8)

twisting (xo = twisting) coordinate. The reduced mass value (

= 1/gss) for the twisting was calculated using the program The frequencies calculated for this surface are compared to the

previously describet®13This was found to be 24.710 au. Since observed values in Table 5. The negative interaction term nicely

TABLE 6: Potential Energy Parameters for One- and Two-Dimensional Surfaces of 2,5-Dihydrothiophene

V= 31X;|_4 + b2X12 + |32X12 + CX;|_2X22

dimension series ay (cm A% by (cmYA?) b, (cm YA?) c (cm YA%
1 vr=0,0r=0 2.894x 1P 1.075x 10¢
1 vr=1,0,r=0 2.865x 10° 1.126x 10*
1 vr=2,r=0 3.033x 10° 1.137x 10*
1 vr=0,r=1 2.957x 10® 0.973x 10¢
2 vp With vt 2.967x 1P 1.029x 10* 5.201x 10¢ 1.394x 1P
2 vp With vg 2.930x 10° 1.109x 10* 2.925x 10¢ —9.660x 10*2

aln cm ! A2 rad 2 units.
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accounts for the approximate 2 chdecrease in each puckering
transition in the bendingug = 1) excited state. Thus, these
two motions are cooperative, since the in-plane ring-bending
facilitates the puckering process.

We also thought that it would be valuable to compare our
puckering/twisting surface to that of the oxygen analogue, 2,5-
dihydrofuran. Although this surfaces has already been calcu-
lated? it was previously obtained using reduced coordinates
rather than with a reduced mass expansdfone have utilized
the structure of 2,5-dihydrofurafto first calculate new values
for the kinetic energy constants:

Oas(X) = (1.024x 10°2) — (2.346x 10 x> —
(4.822x 10 Hx* + 2.094¢ (9)

and

0s5(%,) = 0.03969 (10)

These were then used to determine the surface

Viem ) = (5.792x 10)x,* + (9.075x 10%)x,° +
(5.643x 10x,” + (2.225x 10°)x,%,” (11)

which can be compared to the corresponding 2,5-dihydro-
thiophene surface in eq 7. Comparison of the coefficients shows
that the overall ring-puckeringx{) motion requires greater
energy for the oxygen compound, reflecting the higher angle-
bending force constant for the-«©—C angle bending compared
to the C-S—C angle. As expected, the ring-twisting constants,
5.643x 10* cmY/rac? for the oxygen compound and 5.264

10* cm~Yracf for 2,5-dihydrothiophene, are very similar. The
interaction between the puckering and twisting motions does
differ somewhat between the two molecules, however.xfhe?
term for the furan is about 60% higher in magnitude.
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Conclusions

2,5-Dihydrothihphene has a rich far-infrared spectrum with
four ring-puckering series clearly evident, arising not only from
the principal series but also from three different vibrational
excited states. Examination of the frequency shifts shows that
the ring-puckering and ring-twisting motions are anticooperative,
while the puckering and in-plane ring-angle bending motion are
cooperative.
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